

Podrobné modelování teplot v závislosti na nadmořské výšce a vzdálenosti od vodního rezervoáru

aneb

informace pro zemědělce s využitím meteorologických předpovědních služeb

Karel Jedlička

smrcek@kgm.zcu.cz

Content

- About EUXDAT
- EUXDAT agriculture e-infrastructure
- Euxdat Experiments

EUXDAT

www.euxdat.eu

- EUXDAT proposes an e-Infrastructure, which addresses agriculture, land monitoring and energy efficiency for a sustainable development, as a way to support planning policies.
- Consortium: 9 partners from 7 countries
- Duration: 11/2017-10/2020
- H2020 topic: Platform-driven e-infrastructure innovation (EINFRA-21-2017)
- H2020 type of action: Research and Innovation Action
- H2020 pillar: Excellent Science

EUXDAT agriculture e-infrastructure

- Cloud platform
- Client side: web based coding environment
 - Jupyter Notebook & Python
- Server side (cloud/HPC):
 - GDAL/OGR
 - (GRASS)
 - Sen2Agri

EUXDAT agriculture e-infrastructure

- Implementing defined scenarios
 - Open Land Use Map Improvement
 - Monitoring of crop status
 - Delimiting Agro-climatic zones
 - Looking for climatic patterns changes
 - Information support for field use recommendations
 - Effective utilization of natural resources

- Goal: to provide local agro-climatic maps by processing detailed EO data and climate model data.
- Data:
 - General weather conditions (large-scale weather models ~ Meteoblue API)
 - Local topography (elevation, North/South slopes ~ EU-DEM)
 - Hydrology ~ buffer effects, such as rivers, lakes, sea or swamps (OpenStreetMap)
 - Soil types (OLU).
- Initial experiments:
 - *Elevation* as a factor influencing temperature
 - *Slope orientation* as a factor influencing temperature
 - *Hydrology* as a factor influencing temperature
 - .
- Verification: meteorological expert needed

- Elevation as a factor influencing temperature
 - Temperature on Earth's surface decreases averagely by 0.65 °C for each 100 meters of elevation (under normal weather circumstances)
 - Temperatures provided by global meteorological models are related a lattice of particular geographic positions (with elevation defined as an elevation 2 m above Earth's surface)
 - DEMs used by global meteo models are sparse

- *Elevation* as a factor influencing temperature
 - Input ~ sparse DEM (with approx. 4x4 km sampling) of temperatures estimated on earth's surface reduction to sea level:

 $T_0 = T_s + k * E_s / 100$

- Densification of the 4x4 km DEM T_0 temperature to 25 x 25 m spacing DEM using *spline interpolation*.
- Applying the elevation factor to calculate temperatures back on surface, but on DEM with 25x25 m spacing.

 $T_s = T_0 - k * E_s / 100$

- Elevation as a factor influencing temperature
 - Temperatures on Surface (sparse)
 - Temperatures reduction to sea level
 - Applying the elevation factor back

• *Elevation* as a factor influencing temperature

- *Hydrology* as a factor influencing temperature
 - Water accumulates thermal energy from sun and neighborhood.
 - Water has much longer thermal inertia than air.
 - Water smooths the daily temperature changes (lowering the temperature during the hot period of a day and increasing the temperature during night).
 - Such an influence subsides with a distance from the water reservoir.

- Talking technically
 - Water reservoirs keep an average day temperature.

- Water influence to temperature decreases inversely in proportion to distance (the closer a place is to the water, the more influence)
- The influence ends in 1 km distance.

- Hydrology as a factor influencing temperature
 - Clean hydrologic data to exclude irrelevant water reservoirs
 - Calculation of the hydrologic effect to the temperature of a selected day hour

3

- Hydrology as a factor influencing temperature
 - Clean hydrologic data to exclude irrelevant water reservoirs
 - Water areas ~ exclude areas smaller than a treshold

- Water streams ~ exclude upper streams shorten than a treshold
 - Apply Strahler ordering
 - Exclude streams of 1st order shorter than a treshold

- Hydrology as a factor influencing temperature
 - Calculation of the hydrologic effect to temperature at noon

- Hydrology as a factor influencing temperature
 - Calculation of the hydrologic effect to **12 a.m.** temperature

>0°0

Delimiting of Agro-Climatic Zones

• Hydrology as a factor influencing temperature

T< 0°C

- Calculation of the hydrologic effect to 6 a.m. temperature
 - (because freezing areas are of interest for agriculture)

- Status of the art
 - Initial experiments performed
 - Verification: meteorological expert needed

Zones for 1st of April 1998 – 2018

